Representation Theory:

A Friendly Introduction

Bryan W. Kettle
October 20, 2021
University of Alberta

TABLE OF CONTENTS

1. Preliminaries
2. Representation Theory of Groups
3. Representation Theory of Associative Algebras

Preliminaries

MOTIVATION

What is representation theory?

- Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces
- When such abstract algebraic object is being represented on a finite-dimensional vector space, its elements are described by matrices and its algebraic operations are described by matrix addition and/or matrix multiplication
- Representation theory reduces abstract algebra problems to linear algebra problems

MOTIVATION

Where is representation theory applied?

- Algebra and number theory
- Category theory
- Quantum physics: the theory of elementary particles and more
- Fourier analysis
- And much more!

GROUPS

Definition

A group (G, \star) is a set G equipped with some binary operation $\star: G \times G \rightarrow G,(a, b) \mapsto a \star b$ that satisfies 3 conditions:

- Associativity: $(a \star b) \star c=a \star(b \star c) \quad \forall a, b, c \in G$
- Unitarity: $\exists e \in G$ such that $e \star a=a=a \star e \quad \forall a \in G$ (often we denote $e=1=1_{G}$)
- Invertibility: $\forall a \in G \exists b \in G$ such that $a \star b=e$ and $b \star a=e$ (often we denote $b=a^{-1}$)

GROUPS

Examples

$\cdot(\mathbb{Z},+),(\mathbb{k},+),\left(\mathbb{k}^{*}=\mathbb{k} \backslash\{0\}, \cdot\right)$, where $\mathbb{k}=\mathbb{Q}, \mathbb{R}, \mathbb{C}$

- $(\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\},+)$
- $\left(\mathrm{GL}_{n}(\mathbb{k})=\left\{A \in M_{n}(\mathbb{k}) \mid A\right.\right.$ is invertible $\left.\}, \cdot\right)$
- $\left(\mathrm{SO}_{3}(\mathbb{R})=\left\{A \in \mathrm{GL}_{3}(\mathbb{R}) \mid A A^{T}=I_{3} \operatorname{det} A=1\right\}, \cdot\right)$
- For any set $X,\left(S_{X}=\{\varphi: X \rightarrow X \mid \varphi\right.$ is bijective $\}$, o); when $X=\{1,2, \ldots, n\}$, we write $S_{X}=S_{n}$
- For any \mathbb{k}-vector space V, $\left(\mathrm{GL}_{\mathfrak{k}}(V)=\{\varphi: V \rightarrow V \mid \varphi\right.$ is \mathbb{k}-linear and invertible $\left.\}, \circ\right)$

GROUPS

Definition

If (G, \star) and (H, \star) are groups, then a group morphism $\rho:(G, \star) \rightarrow(H, \star)$ is a map $\rho: G \rightarrow H$ such that $\rho(a \star b)=\rho(a) \oplus \rho(b) \forall a, b \in G$.

From the group axioms, one can deduce that $\rho\left(1_{G}\right)=1_{H}$ and $\rho\left(a^{-1}\right)=\rho(a)^{-1} \forall a \in G$.

Examples

$\cdot \imath:(\mathbb{R},+) \rightarrow(\mathbb{C},+), a \mapsto a$
$\cdot \pi:(\mathbb{Z},+) \rightarrow(\mathbb{Z} / n \mathbb{Z},+), a \mapsto \bar{a}$

- $\varphi:(G, \star) \rightarrow\left(S_{G}, \circ\right), g \mapsto \varphi_{g}$, where $\varphi_{g}: a \mapsto g \star a$

GROUP ACTIONS

Definition

Let (G, \star) be a group and X be a set. A group action of (G, \star) on X is a group morphism $\alpha:(G, \star) \rightarrow\left(S_{X}, \circ\right)$.

So what does this mean:

- $\alpha\left(1_{G}\right)=\operatorname{id}_{X}$, so $\alpha\left(1_{G}\right)(x)=\operatorname{id}_{X}(x)=x$ for $x \in X$
- $\alpha(g \star h)=\alpha(g) \circ \alpha(h)$, so $\alpha(g \star h)(x)=\alpha(g)(\alpha(h)(x))$ for $g, h \in G$ and $x \in X$

If we instead use $g \bullet x=\alpha(g)(x)$, then the above conditions may be more familiar:

- $1_{G} \bullet x=x$ for $x \in X$
- $(g \star h) \bullet x=g \bullet(h \bullet x)$ for $g, h \in G$ and $x \in X$

GROUP ACTIONS

Example

The group ($\left.D_{3}, \cdot\right)$, where
$D_{3}=\left\{1, a, a^{2}, b, a b, a^{2} b \mid a^{3}=b^{2}=(a b)^{2}=1\right\}$, acts on the Triangle by means of symmetry.

Figure 1: Symmetries of the Triangle

GROUP ACTIONS

Example

The group $\left(\mathrm{SO}_{3}(\mathbb{R}), \cdot\right)$ acts on the vector space \mathbb{R}^{3} via matrix multiplication:

$$
A x \in \mathbb{R}^{3} \quad \text { for } \quad A \in \mathrm{SO}_{3}(\mathbb{R}), x \in \mathbb{R}^{3}
$$

The group $\left(\mathrm{SO}_{3}(\mathbb{R}), \cdot\right)$ is known as 'the 3D rotation group' because it is the group of all rotations about the origin of \mathbb{R}^{3}.

Moreover, this group action is \mathbb{R}-linear, so this is our first example of a ‘group representation’.

Representation Theory of Groups

GROUP REPRESENTATIONS

Definition

Let (G, \star) be a group and V be a \mathbb{k}-vector space. A representation of (G, \star) on V is a group morphism $\rho:(G, \star) \rightarrow\left(\mathrm{GL}_{k}(V), \circ\right)$. We say that the representation is finite-dimensional when $\operatorname{dim}_{k} V<\infty$.

So really, group representations are a special case of group actions.
If $V \cong \mathbb{k}^{n}$, then $\mathrm{GL}_{\mathfrak{k}}(V) \cong \mathrm{GL}_{\mathfrak{k}}\left(\mathbb{k}^{n}\right) \cong \mathrm{GL}_{n}(\mathbb{k})$.

GROUP REPRESENTATIONS

Examples

- triv: $(G, \star) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}(\mathbb{C}), \circ\right) \cong\left(\mathbb{C}^{*}, \cdot\right)$, where $\operatorname{triv}(g)=1 \forall g \in G$
- $\chi:(\mathbb{Z} / n \mathbb{Z},+) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}(\mathbb{C}), \circ\right) \cong\left(\mathbb{C}^{*}, \cdot\right)$, where $\chi(\bar{m})=e^{2 \pi i m / n}$
- $\varphi:\left(S_{3}, \circ\right) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}^{2}\right), \circ\right) \cong\left(\mathrm{GL}_{2}(\mathbb{C}), \cdot\right)$, where

$$
\varphi\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right)=\left[\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right], \quad \varphi\left(\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right)=\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]
$$

GROUP REPRESENTATIONS

Definition

Given two representations $\rho_{1}:(G, \star) \rightarrow\left(\mathrm{GL}_{\mathfrak{k}}\left(V_{1}\right), \circ\right)$ and $\rho_{2}:(G, \star) \rightarrow\left(\operatorname{GL}_{\mathfrak{k}}\left(V_{2}\right), \circ\right)$, a morphism from ρ_{1} to ρ_{2} is a \mathbb{k}-linear map $T: V_{1} \rightarrow V_{2}$ such that the following diagram commutes $\forall g \in G$:

$$
\begin{array}{cc}
V_{1} \\
T \downarrow \\
\\
V_{2} \\
V_{\rho_{2}(g)} & V_{1}(g) \\
V_{2}
\end{array}
$$

If T is invertible, we say that T is an isomorphism from ρ_{1} to ρ_{2} and write $\rho_{1} \cong \rho_{2}$.

GROUP REPRESENTATIONS

Proposition-Definition

Given two representations $\rho_{1}:(G, \star) \rightarrow\left(\mathrm{GL}_{\mathfrak{k}}\left(V_{1}\right), \circ\right)$ and $\rho_{2}:(G, \star) \rightarrow\left(\operatorname{GL}_{\mathfrak{k}}\left(V_{2}\right), \circ\right)$, the map $\rho_{1} \oplus \rho_{2}: G \rightarrow \mathrm{GL}_{\mathfrak{k}}\left(V_{1} \oplus V_{2}\right)$, given by $\left(\rho_{1} \oplus \rho_{2}\right)(g)\left(\left(v_{1}, v_{1}\right)\right)=\left(\rho_{1}(g)\left(v_{1}\right), \rho_{2}(g)\left(v_{2}\right)\right)$, determines a representation of (G, \star) on $V_{1} \oplus V_{2}$ called the direct sum representation of ρ_{1} and ρ_{2}.

Given representations $\rho_{1}:(G, \star) \rightarrow\left(\mathrm{GL}_{m}(\mathbb{k}), \cdot\right)$ and $\rho_{2}:(G, \star) \rightarrow\left(\mathrm{GL}_{n}(\mathbb{k}), \cdot\right)$, their direct sum is the representation $\rho_{1} \oplus \rho_{2}:(G, \star) \rightarrow\left(\mathrm{GL}_{m+n}(\mathbb{k}), \cdot\right)$, where

$$
\left(\rho_{1} \oplus \rho_{2}\right)(g)=\left[\begin{array}{cc}
\rho_{1}(g) & 0 \\
0 & \rho_{2}(g)
\end{array}\right]
$$

GROUP REPRESENTATIONS

Example (Permutation Representation)

$\psi:\left(S_{n}, \circ\right) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}^{n}\right), \circ\right), \sigma \mapsto \psi_{\sigma}$, where $\psi_{\sigma}\left(e_{i}\right)=e_{\sigma(i)}$ and e_{1}, \ldots, e_{n} are the standard basis vectors of \mathbb{C}^{n}

The subspaces $V_{1}=\mathbb{C}\left(e_{1}+\cdots+e_{n}\right)=\left\{\sum_{i} \lambda_{i} e_{i} \mid \lambda_{1}=\cdots=\lambda_{n}\right\}$ and $V_{2}=\left\{\sum_{i} \lambda_{i} e_{i} \mid \sum_{i} \lambda_{i}=0\right\}$ are invariant under $\psi_{\sigma} \forall \sigma \in S_{n}$. Moreover, $\mathbb{C}^{n}=V_{1} \oplus V_{2}$

Therefore, $\left.\psi\right|_{V_{1}}:\left(S_{n}, \circ\right) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}\left(V_{1}\right), \circ\right), \sigma \mapsto \psi_{\sigma}$ and
$\left.\psi\right|_{V_{2}}:\left(S_{n}, \circ\right) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}\left(V_{2}\right), \circ\right), \sigma \mapsto \psi_{\sigma}$ are group representations as well

In particular, $\left.\left.\psi \cong \psi\right|_{V_{1}} \oplus \psi\right|_{V_{2}}$

GROUP REPRESENTATIONS

Definition

Given a representation $\rho:(G, \star) \rightarrow\left(\mathrm{GL}_{\mathfrak{k}}(V), \circ\right)$ and a subspace W of V, we say W is (G, \star)-invariant if $\rho(g) W \subseteq W \forall g \in G$.

In this case, there is an induced representation
$\left.\rho\right|_{W}:(G, \star) \rightarrow\left(\mathrm{GL}_{\mathfrak{k}}(W), \circ\right)$ given by $\left.\rho\right|_{W}(g)=\rho(g)$.

Definition

A (non-zero) representation $\rho:(G, \star) \rightarrow\left(\mathrm{GL}_{k}(V), \circ\right)$ is irreducible if the only (G, \star)-invariant subspaces of V are $\{0\}$ and V.

GROUP REPRESENTATIONS

Example (Permutation Representation)

$\psi:\left(S_{n}, \circ\right) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}^{n}\right), \circ\right), \sigma \mapsto \psi_{\sigma}$, where $\psi_{\sigma}\left(e_{i}\right)=e_{\sigma(i)}$ and e_{1}, \ldots, e_{n} are the standard basis vectors of \mathbb{C}^{n}

The subspaces $V_{1}=\mathbb{C}\left(e_{1}+\cdots+e_{n}\right)=\left\{\sum_{i} \lambda_{i} e_{i} \mid \lambda_{1}=\cdots=\lambda_{n}\right\}$ and $V_{2}=\left\{\sum_{i} \lambda_{i} e_{i} \mid \sum_{i} \lambda_{i}=0\right\}$ are (S_{n}, o)-invariant

Moreover, the representations $\left.\psi\right|_{V_{1}}:\left(S_{n}, \circ\right) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}\left(V_{1}\right), \circ\right)$ and $\left.\psi\right|_{V_{2}}:\left(S_{n}, \circ\right) \rightarrow\left(\mathrm{GL}_{\mathbb{C}}\left(V_{2}\right), \circ\right)$ are irreducible

So we have a decomposition into irreducibles: $\left.\left.\psi \cong \psi\right|_{V_{1}} \oplus \psi\right|_{V_{2}}$

GROUP REPRESENTATIONS

Definition

A representation $\rho:(G, \star) \rightarrow\left(\mathrm{GL}_{\mathfrak{k}}(V), \circ\right)$ is semisimple if there exists a decomposition $V=V_{1} \oplus \cdots \oplus V_{n}$, where each V_{i} is (G, \star)-invariant and each $\left.\rho\right|_{V_{i}}$ is irreducible $(\forall i=1, \ldots, n)$

Theorem (Maschke)

Every (finite-dimensional) representation of a finite group is semisimple (assuming char $\mathbb{k} \nmid|G|$).

So: classifying all possible irreducible (fin-dim) representations of a finite group (G, \star) (up to isomorphism) will classify all possible (fin-dim) representations (up to isomorphism)

GROUP REPRESENTATIONS

Example

Setting $\omega_{n}=e^{2 \pi i / n}$, then $\chi_{k}:(\mathbb{Z} / n \mathbb{Z},+) \rightarrow\left(\mathbb{C}^{*}, \cdot\right), \bar{m} \mapsto \omega_{n}^{k m}$ is a representation for each $k=1, \ldots, n-1$. The representations $\chi_{0}, \ldots, \chi_{n-1}$ classify the distinct irreducible representations of ($\mathbb{Z} / n \mathbb{Z},+$) up to isomorphism.

GROUP REPRESENTATIONS

Theorem

Let $\left\{\rho_{i}:(G, \star) \rightarrow\left(\operatorname{GL}_{\mathfrak{k}}\left(V_{i}\right), \circ\right)\right\}_{i=1, \ldots, n}$ be all the distinct irreducible representations of a finite group (G, \star) up to isomorphism and let $d_{i}=\operatorname{dim}_{\mathfrak{k}} V_{i}$. Then

$$
|G|=d_{1}^{2}+\cdots+d_{n}^{2} .
$$

Moreover, $d_{i}| | G \mid$ for each $i=1, \ldots, n$.

Theorem

The number of all distinct irreducible representations of a finite group (G, \star) (up to isomorphism) is equal to the number of conjugacy classes of (G, \star).

GROUP REPRESENTATIONS

Definition

The tensor product of two \mathbb{k}-vector spaces V and W is the new \mathbb{K}_{k}-vector space $V \otimes W=\operatorname{span}_{\mathfrak{k}}\{v \otimes w \mid v \in V, w \in W\}$, where $(-) \otimes(-)$ is \mathbb{k}-bilinear:

$$
\begin{aligned}
& \left(\lambda_{1} v_{1}+\lambda_{2} v_{2}\right) \otimes w=\lambda_{1}\left(v_{1} \otimes w\right)+\lambda_{2}\left(v_{2} \otimes w\right), \\
& v \otimes\left(\lambda_{1} w_{1}+\lambda_{2} w_{2}\right)=\lambda_{1}\left(v \otimes w_{1}\right)+\lambda_{2}\left(v \otimes w_{2}\right),
\end{aligned}
$$

where $v, v_{1}, v_{2} \in V, w, w_{1}, w_{2} \in W, \lambda_{1}, \lambda_{2} \in \mathbb{k}$.
If V has basis $\left\{a_{1}, \ldots, a_{m}\right\}$ and W has basis $\left\{b_{1}, \ldots, b_{n}\right\}$, then $V \otimes W$ has basis $\left\{a_{i} \otimes b_{j} \mid i=1, \ldots, m, j=1, \ldots, n\right\}$.

GROUP REPRESENTATIONS

Proposition-Definition

Given two representations $\rho_{1}:(G, \star) \rightarrow\left(\mathrm{GL}_{\mathfrak{k}}\left(V_{1}\right), \circ\right)$ and $\rho_{2}:(G, \star) \rightarrow\left(\operatorname{GL}_{\mathfrak{k}}\left(V_{2}\right)\right.$, o $)$, the map $\rho_{1} \otimes \rho_{2}: G \rightarrow \mathrm{GL}_{\mathfrak{k}}\left(V_{1} \otimes V_{2}\right)$, given by $\left(\rho_{1} \otimes \rho_{2}\right)(g)\left(\left(v_{1} \otimes v_{2}\right)\right)=\rho_{1}(g)\left(v_{1}\right) \otimes \rho_{2}(g)\left(v_{2}\right)$, determines a representation of (G, \star) on $V_{1} \otimes V_{2}$ called the tensor product representation of ρ_{1} and ρ_{2}.

GROUP REPRESENTATIONS

A famous theorem in group theory proven using representation theory (no alternative proof was found until the 1970's):

Burnside's Theorem

Let (G, \star) be a group of order $p^{a} q^{b}$, where p and q are prime. Then (G, \star) is solvable.

GROUP REPRESENTATIONS

The dream:

- Classify all irreducible representations
- There has been success with more well-understood algebraic objects when restricting to finite-dimensional representations
- What about for infinite dimensional representations? Not really

Representation Theory of Associative Algebras

ALGEBRA REPRESENTATIONS

So, what next?

Definition

A (unital, associative) \mathbb{k}-algebra $A=(A,+, \cdot)$ is a \mathbb{k}-vector space $(A,+)$ such that:

- $\exists e \in A$ such that $e \cdot a=a=a \cdot e \forall a \in A$ (usually, we denote $e=1_{A}=1$)
- $\lambda(a \cdot b)=(\lambda a) \cdot b=a \cdot(\lambda b) \forall a, b \in A, \forall \lambda \in \mathbb{k}$
- $(a \cdot b) \cdot c=a \cdot(b \cdot c) \forall a, b, c \in A$
- $a \cdot(b+c)=(a \cdot b)+(a \cdot c) \forall a, b, c \in A$
- $(b+c) \cdot a=(b \cdot a)+(c \cdot a) \forall a, b, c \in A$

ALGEBRA REPRESENTATIONS

Examples

- $(\mathbb{k},+, \cdot)$ is a \mathbb{k}-algebra
- The polynomial ring ($\left.\mathbb{k}\left[x_{1}, \ldots, x_{n}\right],+, \cdot\right)$ is a \mathbb{k}-algebra
- For a group (G, \star), the group algebra $(\mathbb{k}[G],+, \star)$ is a \mathbb{k}-algebra
- For a complex Lie algebra \mathfrak{g}, the universal enveloping algebra $(\mathfrak{U}(\mathfrak{g}),+, \cdot)$ is a \mathbb{C}-algebra
- For a \mathfrak{k}-vector space, $\left(\operatorname{End}_{\mathfrak{k}}(V)=\{\varphi: V \rightarrow V \mid \varphi\right.$ is \mathbb{k}-linear $\left.\},+, \circ\right)$ is a \mathbb{k}-algebra
- $\left(M_{n}(\mathbb{k}),+, \circ\right)$ is a \mathbb{k}-algebra

ALGEBRA REPRESENTATIONS

Definition

If $(A,+, \cdot)$ and $(B,+, \cdot)$ are \mathbb{k}-algebras, then an algebra morphism $\rho:(A,+, \cdot) \rightarrow(B,+, \cdot)$ is a \mathbb{k}-linear map $\rho: A \rightarrow B$ such that

- $\rho\left(1_{A}\right)=1_{B}$
- $\rho\left(a_{1} a_{2}\right)=\rho\left(a_{1}\right) \rho\left(a_{2}\right) \forall a_{1}, a_{2} \in A$

Definition

Let $(A,+, \cdot)$ be a \mathbb{k}-algebra and V be a \mathbb{k}-vector space. A representation of $(A,+, \cdot)$ on V is an algebra morphism $\rho:(A,+, \cdot) \rightarrow\left(\operatorname{End}_{\mathfrak{k}}(V),+, \circ\right)$.

ALGEBRA REPRESENTATIONS

An algebra rep $\varphi:(A,+, \cdot) \rightarrow\left(\operatorname{End}_{k}(V),+, \circ\right)=V$ is a (left) A-module A group rep $\rho:(G, \star) \rightarrow\left(\mathrm{GL}_{\mathfrak{k}}(V), \circ\right)=V$ is a (left) $\mathbb{k}[G]$-module A Lie algebra rep $\psi:(\mathfrak{g},+,[\cdot, \cdot]) \rightarrow\left(\mathfrak{g l}_{k}(V),+,[\cdot, \cdot]\right)=V$ is a (left) $\mathfrak{H}(\mathfrak{g})$-module

So representation theory is a study of module theory

ALGEBRA REPRESENTATIONS

Similar machinery from group representations are available for algebra representations, such as direct products

However a tensor product of algebra representations
$\rho_{1}:(A,+, \cdot) \rightarrow\left(\operatorname{End}_{k}\left(V_{1}\right),+, \circ\right), \rho_{2}:(A,+, \cdot) \rightarrow\left(\operatorname{End}_{k}\left(V_{2}\right),+, \circ\right)$ will not be a representation of A, but rather of $A \otimes A$

Algebras for which the tensor product of its representations is again a representation of itself are called Hopf algebras

Quantum groups are important examples of Hopf algebras

End

